Artificial Intelligence Guided Echocardiographic Screening of Rare Diseases (EchoNet-Screening) | oneAMYLOIDOSISvoice
×
recruiting

Artificial Intelligence Guided Echocardiographic Screening of Rare Diseases (EchoNet-Screening)

informazione chiave

ID studio #: NCT05139797

condizione: Amiloidosi cardiaca

stato: reclutamento

scopo:

Despite rapidly advancing developments in targeted therapeutics and genetic sequencing, persistent limits in the accuracy and throughput of clinical phenotyping has led to a widening gap between the potential and the actual benefits realized by precision medicine.

Recent advances in machine learning and image processing techniques have shown that machine learning models can identify features unrecognized by human experts and more precisely/accurately assess common measurements made in clinical practice.

The investigators have developed an algorithm, termed EchoNet-LVH, to identify cardiac hypertrophy and identify patients who would benefit from additional screening for cardiac amyloidosis and will prospectively evaluate its accuracy in identifying patients whom would benefit from additional screening for cardiac amyloidosis.

intervento: EchoNet-LVH screening for cardiac amyloidosis

risultati: https://clinicaltrials.gov/ct2/show/results/NCT05139797

ultimo aggiornamento: Dicembre 28, 2023

dettagli dello studio

data d'inizio: 18 Novembre 2021

completamento previsto: 1 Giugno 2025

ultimo aggiornamento: 8 Febbraio 2023

taglia / iscrizione: 300

descrizione dello studio: Despite rapidly advancing developments in targeted therapeutics and genetic sequencing, persistent limits in the accuracy and throughput of clinical phenotyping has led to a widening gap between the potential and the actual benefits realized by precision medicine. This conundrum is exemplified by current approaches to assessing morphologic alterations of the heart. If reliably identified, certain cardiac diseases (e.g. cardiac amyloidosis and hypertrophic cardiomyopathy) could avoid misdiagnosis and receive efficient treatment initiation with specific targeted therapies. The ability to reliably distinguish between cardiac disease types of similar morphology but different etiology would also enhance specificity for linking genetic risk variants and determining mechanisms

Recent advances in machine learning and image processing techniques have shown that machine learning models can identify features unrecognized by human experts and more precisely/accurately assess common measurements made in clinical practice. In echocardiography, this ability for precision measurement and detection is important in both disease screening as well as diagnosis of cardiovascular disease.

Echocardiography is routinely and frequently used for diagnosis and prognostication in routine clinical care, however there is often subjectivity in interpretation and heterogeneity in application. Human attention is fatigable and has heterogenous interpretation between providers. AI guided disease screening workflows have been proposed for rare diseases such as cardiac amyloidosis and other diseases with relatively low prevalence but significant human impact with targeted therapies when detected early. This is an area particularly suitable for AI as there are multiple mimics where diseases like hypertrophic cardiomyopathy, cardiac amyloidosis, aortic stenosis, and other phenotypes might visually be similar but can be distinguished by AI algorithms. The investigators have developed an algorithm, termed EchoNet-LVH, to identify cardiac hypertrophy and identify patients who would benefit from additional screening for cardiac amyloidosis, hypertrophic cardiomyopathy and other diseases. E

risultati primari:

  • Number of New Diagnoses of Cardiac Amyloidosis Found
    From chart review, identification of patients who have a downstream diagnosis of cardiac amyloidosis
  • 6 mesi

risultati secondari:

  • Number of New Diagnoses of TTR Amyloidosis Found
    6 mesi
  • Number of New Diagnoses of AL Amyloidosis Found
    6 mesi

criterio di inclusione:

• Età idonea: 18+
• Sessi idonei: tutti
Criterio di inclusione:

Patients who have a high suspicion for cardiac amyloidosis by AI algorithm

criteri di esclusione: criteri:

Patients who decline to be seen at specialty clinic
Patients who have passed away

sponsor: Cedars-Sinai Medical Center

sedi dei centri di prova:

Per migliorare la tua esperienza su questo sito, utilizziamo i cookie. Ciò include cookie essenziali per il funzionamento di base del nostro sito Web, cookie per scopi di analisi e cookie che ci consentono di personalizzare il contenuto del sito. Facendo clic su "Accetta" o su qualsiasi contenuto di questo sito, accetti che i cookie possano essere inseriti. È possibile modificare le impostazioni dei cookie del browser in base alle proprie preferenze.
Maggiori informazioni

Le impostazioni dei cookie su questo sito sono impostate per "permettere cookie" per offrirti la migliore esperienza di navigazione possibile. Se si continua a utilizzare questo sito web senza cambiare le impostazioni dei cookie o si fa clic su "Accetto", allora si acconsente a questo.

Chiudi

Per migliorare la tua esperienza su questo sito, utilizziamo i cookie. Ciò include cookie essenziali per il funzionamento di base del nostro sito Web, cookie per scopi di analisi e cookie che ci consentono di personalizzare il contenuto del sito. Facendo clic su "Accetta" o su qualsiasi contenuto di questo sito, accetti che i cookie possano essere inseriti. È possibile modificare le impostazioni dei cookie del browser in base alle proprie preferenze.
Maggiori informazioni

Le impostazioni dei cookie su questo sito sono impostate per "permettere cookie" per offrirti la migliore esperienza di navigazione possibile. Se si continua a utilizzare questo sito web senza cambiare le impostazioni dei cookie o si fa clic su "Accetto", allora si acconsente a questo.

Chiudi